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Best Rational Starting Approximations and 
Improved Newton Iteration for the Square Root 

By Ichizo Ninomiya 

Abstract. The most important class of the best rational approximations to the square root 
is obtained analytically by means of elliptic function theory. An improvement of the Newton 
iteration procedure is proposed. 

1. Introduction. The most efficient computing procedure for calculating \x on an 
interval [a, b] (0 < a < b) is to apply the Newton iteration, 

Ri = (Ri -1 + x/Ri -1)/2 = N(Ri -1) = N'(R ), 

to an appropriate starting approximation Ro. The function commonly used for a 
starting approximation is a polynomial or a rational function of some prescribed 
degree which is the best with respect to a certain optimality criterion. Several writers 
have obtained various best starting approximations with respect to different criteria 
[2]-[7]. 

A seemingly reasonable criterion is Chebyshev's, 

maxjRo(x)>/x - 11 = min, 

but a more reasonable one is Moursund's, 

maxjRi(x)/Jx - = min. i = 1, 2, .... 
since our purpose is to optimize the quality of R. for some i > 0, not Ro itself. Mour- 
sund [7] has pointed out that a function Ro satisfying his criterion for i = I satisfies 
it for every i > 1. Another familiar criterion is, say, the logarithmic criterion, 

maxjlog(Ro(x)/,,/x)| = min. 

It is believed that this criterion has been used by many writers [2]-[5] for technical 
reasons to make the analysis simpler. Recently, Sterbenz and Fike [9], King and 
Phillips [8], and the present author [10], discovered independently a surprisingly 
simple relationship, Theorem 2 in Section 2, among the three criteria. 

This paper presents two new contributions concerning the computation of the 
square root. The main contribution is a complete analytical theory for the most 
important class of the best rational approximations to the square root. As a matter 
of fact, it is a simple modification of the classical but practically unknown theory 
which Ahiezer [1] credits to Solotarev. On the basis of the theory, the tables of the 
best rational approximations in Moursund's sense are computed anew. The secondary 
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contribution is an improvement of the Newton iteration for the square root itself, 
which leads to a striking acceleration of the convergence. 

2. Preliminaries. In this section, various definitions and theorems concerning the 
characterization of, and the relation of the best rational approximations to the 
square root will be given for later references. 

Let R(p, q) denote the set of rational functions of the form R(x) = P(x)/Q(x), 
where P(x) and Q(x) are mutually prime polynomials of degrees not exceeding p and q, 
respectively. For any R e R(p, q) which is not identically 0, its degree D(R) is defined by 

(1) D(R) = p + q-min[p-p*, q-q*], 

where p* and q* are the exact degrees of P and Q respectively. 
A function R* E R(p, q) is called the C-approximation, the M-approximation, or the 

L-approximation, respectively, of the class (p, q) on [a, b], if it satisfies 

(2) EA(R*) = min[E1(R); R e R(p, qs I = C, M, or L, 

where 

(3.1) Ec(R) = max[lR(x)//x - II; xe [a, b]], 

(3.2) EM(R) = max[I(R(x) + x/R(x))/(21x) - II; xe [a, b]], 

(3.3) EL(R) = max[jlog(R(x)/,/x)l; x E [a, b]]. 

These best approximations will be abbreviated as C-approx., M-approx. and L-approx. 
hereafter. 

We shall now state two theorems of which Theorem 1 characterizes the best ap- 
proximations and Theorem 2 clarifies the relation among them. 

THEOREM 1. A function R e R(p, q) is the M-approx. (the C-approx.) of the class (p, q) 
on [a, b], if and only if r(x) = R(x)/Vx attains the minimum r' and the maximum r" 
alternately at D(R) + 2 points of [a, b], and satisfies 

(4) r'r" = 1 ((r' + r")/2 = 1). 

THEOREM 2. Let Rc, RM and RL be the C-approx., the M-approx. and the L-approx., 
respectively, of the same class on the same interval, then there holds the relation, 

(5) RL = RM = Rc/V(l -e2), 

where e = Ec(Rc). 
Theorem 1 is a special case of the more general Theorem 4 of [10]. Theorem 2 is 

given in [9], [10] and partially in [8]. 

3. Analytic Theory. In this section, we shall show that the M-approx. and the 
C-approx. of the classes (p, p) and (p, p - 1) can be obtained analytically with the 
help of elliptic function theory. The Jacobian elliptic function dn(u, k) has the pair of 
fundamental periods (2K, 4iK'), where K and K' are the complete elliptic integrals 
of the first kind corresponding to the modulus k and the complementary modulus k', 
respectively, i.e., 

k2 + k'2 = 1, K = F(k), K' = F(k'), 
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Pn12 
F(p)= J d0/V(1 - p2sin2O). 

Now, letting n be a positive integer, we consider the dn function with the pair of 
fundamental periods (2K/n, 4iK'). The function in question is seen to be of the form 
dn(u/M, h). The modulus h and the constant M should be so determined that we have 

(6) H'/H = nK'/K, M = K/(nH) = K'/H', 

where 

h2 + h'2 = 1, H = F(h), H' = F(h'). 

The modulus h above is determined uniquely, since F(p')/F(p) decreases monotoni- 
cally from infinity to 0 when p increases from 0 to 1. The function 

dn(v, h) = dn(u/M, h) 

thus determined, has, as a function of v, the pair of fundamental periods (2H, 4iH') and 
therefore, as a function of u, the pair of fundamental periods (2K/n, 4iK'). 

The transformation L(n): dn(u, k) -+ dn(u/M, h) which plays a fundamental role in 
this paper, is called an L-transformation of order n. The L-transformation of order 2 
is the familiar Landen transformation, and the following formulas are well known: 

dn(u/M, h) = (k' + dn2(u, k))/((l + k') dn(u, k)), 

(7) h = (1 - k')/(l + k'), h' = 21k'/(1 + k'), 
M = l/(1 + k'). 

On the other hand, it is shown in [1] and [13] that the following formulas are valid 
when n is odd: 

dn(u/M, h) = dn(u, k) [in/2] C(2m - 1) + S(2m - 1) dn2(u, k) 
m=1 C(2m) + S(2m) dn (u, k) 

(n/2] (n/2] 

(8) h = kn H S2(2m - 1), M = H (S(2m - 1)/S(2m)), 
m=1 m=1 

[n/21 
hi = k12-n HI D2(2m - 1), 

mn= 1 

where 

S(j) = sn2(jK/n, k), 

C(j) = cn2(jK/n, k) = 1 -S(j), 

D(j) = dn2(jK/n, k) = 1 - k2S(j). 

We now assert that, with the exception of the last formula for h', the first three formu- 
las of (8) are valid for any value of n. The assertion can be confirmed without any 
serious difficulties from (7) and (8) by mathematical induction on the largest integer m 
such that 2m divides the order n. 
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Let us now proceed to the derivation of the M-approx. and the C-approx. on an 
interval [a, b]. Putting 

(9) k = 1((b - a)/b), k' = 

we define the functions R and R* by the parametric equations on the interval [0, K] 
of U: 

(10.1) x = a/dn2(u, k), 

(10.2) R(x)/Vx = r(x) = dn(u/M, h)/Jh', 

(10.3) R*(x)/Vx = r*(x) = 2 dn(u/M, h)/(1 + h'). 

By using (8) and (10), the functions R and R* are given explicitly as 

(= /21 C(2m - 1)x + S(2m - I)a 
( 1. 1) R(x) = V(a/h') Hf __________ 

M=1 C(2m)x + S(2m)a 

21a [n/21 C(2m - 1)x + S(2m - 1)a 
(11.2) R*(x)= 1 + h' U C(2m)x + S(2mIh)a 

Therefore, R and R* are rational functions. Furthermore, it will be seen that 

R, R* E R([n/2], [(n - 1)/2]), D(R) = D(R*) = -1. 

Note here that, when n is even, the denominator of the last factor in each of (11.1) 
and (11.2) is equal to the constant a. 

THEOREM 3. R and R* are the'M-approx. and the C-approx., respectively1 of the class 

([n/2], [(n - 1)/2]) on [a, b]. 
Proof: Let us examine the behavior of the function r(x) on [a, b]. When u varies 

from 0 to K, dn(u, k) decreases from 1 to k' and hence, x increases from a to b mono- 
tonically. On the other hand, it will be observed from the periodic property that 
dn(u/M, h) attains the maximum 1 and the minimum h' alternately at n + 1 points 

uj= jK/n, j= 0,,...,n. 

Therefore, by (10.2). r(x) attains the maximum r" = /l/h' and the minimum r' = lh' 
alternately at n + 1 points 

x; = a/dn2(uj, k), j = 0, 1, ..., 

Since D(R) + 2 = n + 1, r'r" = 1, we conclude, from Theorem 1, that R is the 
M-approx. of the specified class, i.e., of the class (p, p) when n = 2p + 1, and of the 
class (p, p - 1) when n = 2p. Quite analogously, it will be shown that R* is the 
C-approx. of the same class. This completes the proof. 

The maximum relative errors of R and R* are given by 

(12.1) e = Ec(R) = 1/Vh' - 1, 

(12.2) e* = Ec(R*) = (1 - h')/(1 + h'). 

Another important observation concerning these best approximations is their 
symmetry property: 

(13.1) r(y) = r(z), r*(y) = r*(z) (n: even), 
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(13.2) r(y)r(z) = 1 (n: odd), 

whenever y, z E [a, b] and yz = ab. This follows from the property of dn functions [ 12]: 

dn(nK -u, k) = dn(u, k) (n: even), 

dn(nK - u, k) = k'/dn(u, k) (n: odd), 

sincee to any such y, z there correspond v, w E [0, K] such that 

y = a/dn2(v, k), z = a/dn2(w, k), v + w = K. 

The best approximations thus obtained analytically are defined to be the M-approx. 
and the C-approx., respectively, of order n. 

We now turn to the practical determination of the M-approx. of the first five 
orders on intervals of the form [a, 1], typical values of a being 1/2, 1/4, 1/10, etc. Thus, 
throughout the rest of this section, k and k' have the values 

(14) k = V(1-a), k' = Va. 

Case 1. n = 1. This is the trivial case of the constant approximation. From (11.1), 
(8) and (14), we obtain 

(15) R(x) = a"/4, h = 1(1 - a), h' = Va. 

Case 2. n = 2. This is the case of linear polynomial approximation. From (7), (10) 
and (14), we obtain 

R(x) = Ajx + A0, 

Al = 1 /I (2a 1"4(1 + Va)), 

(16) A0 = JaA , 

h = (1 - Va)/(l + Va), 

h = 2a 14/(1 + Va). 

In the above two cases, the same results could be obtained by elementary means 
without resort to the present theory. 

Case 3. n = 3. From (11.1) and (8), we obtain 

R(x) = V(a/h')(C(1)x + S(1)a)/(C(2)x + S(2)a), 

h = k3S2(1), h' = D2(1)/k'. 

Putting u = K/3 in the well-known formulas [12], 

sn(K - u, k) = cn(u, k)/dn(u, k), 

(17) cn(K - u, k) = k'sn(u, k)/dn(u, k), 

dn(K - u, k) = k'/dn(u, k), 

we have 

(18) S(2) = C(1)/D(1), C(2) = aS(l)/D(l). 
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Elementary algebra, using (14) and (18), yields the results: 

R(x) = AO - B/(x + C), 

C C(1)/S(1), 
AO - C/a' 1 

(19) B = (C2 -a)la14 

Vh = (1 -a)314S() 

V/h' D(1)la'14. 

The only remaining task is the computation of 

S(1)'= sn 2(KII, k),, 

C(1) = cn2(K/3, k) = 1 -S(), 

D(1) = dn2(K/3, k) = 1 - (1 - a)S(1). 

This could be done by an algorithm for Jacobian elliptic functions, but we take an- 
other elementary way here. From the first of the duplication formulas [12], 

sn2u = 2snucnudnu/(1 - k2sn4u), 

(20) cn2u = (1 - 2sn2u + k2sn4u)/(l - k2sn4u), 

dn2u = (1 - 2k2sn2u + k2sn4u)/(l - k2sn4u), 

we have 

sn(2K/3, k) = 2s1((1 - s2Xl - k2s2))/(l - k2s4), 

where s stands for sn(K/3, k). On the other hand, the first equation of (18) is rewritten 
as 

sn(2K/3, k) = /(1- s2)/V(I - k2s2). 

Eliminating sn(2K/3, k) from these equations, we obtain a quartic equation 

(21) k2s4-2k2s3 + 2s-1 = 0, 

whose unique root in the interval [1/2, 1] is the value of sn(K/3, k). This root can be 
easily obtained by Newton's method with the initial approximation 1/2. 

We notice that the same equation as (21), Eq. (9) of the appendix of [4], appeared 
in Maehly's analysis, for the present case. 

Case 4. n = 4. From (11.1) and (8), we obtain 

R = (C(l)x + S(1)a)(C(3)x + S(3)a) 
R(x)- /(ah')(C(2)x + S(2)a) 

h = k4S2(1)S2(3). 

Fortunately, there is no computational problem in this case, since sn's and cn's for 
integral multiples of K/4 are known to be expressed in closed forms as functions of k' 
only [12]. Thus, we have 
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S(1) = (1 -1(k'/(1 + k')))/(l + 1/k'), 

S(2) = 1/(1 + k'), 

S(3) = (1 + 1/(k'/(l + k')))/(l + 1k'), 

C(1) s|k'(1 + 1/J(1 + k'))/(l + 1k'), 
C(2) = k'/( + k'), 

C(3) = 1lk'(l-1/1-(1 + k'))/(l + 1k'). 

Now it is a simple matter to obtain the following results: 

R(x) = AIx + A0 - B/(x + C), 

A 1 1/((4A) 14(1 + al/4)) 

A0 = (Ia + A)A, 

(22) B = IaAA,, 

C - a, 

1h-= (1 - a'14)/(l + a1/4), 

lh' = (4A) 14/(I + a' 4), 

where A - 2a'/4(1 + Ia). 
Case 5. n = 5. From (11.1) and (8), it follows that 

R(x) = 1,(a/h') (C(I)x + S(I)a)(C(3)x + S(3)a) 
(C(2)x + S(2)a)(C(4)x + S(4)a) 

h = k5S2(1)S2(3), 

h' = D2(1)D2(3)/k'3. 

On the other hand, putting u = K/5, 2K/5 in (17), we have 

S(4) = C(1)/D(1), C(4) = aS(l)/D(l), 

S(3) = C(2)/D(2), C(3) = aS(2)/D(2), 

D(3) = a/D(2), 

which, when substituted, yield 

1- 4 (C(1)x + S(I)a)(S(2)x + C(2)) 
(C(2)x + S(2)a)(S(1)x + C(1))' 

h = (1 -a)52S2(1)C2(2)/D2(2), 

hi = 1/aD2(1)/D2(2). 

Now we transform R into a continued fraction, and find after some algebraic manipu- 
lations the results: 
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R(x) = A o - B/(x + C - D/(x + E)), 

A0 = a' 4FIG 

B = AO(F + aIG - G - a/F), 

E = aAo(F/G - G/F)/B, 

(23) C = F + a/G -E, 

D = CE - aFIG, 

Vh = (1 - a)514S(1)C(2)/D(2), 

/h' -= a I4D()/D(2), 

where F = C(1)/S(1), G = C(2)/S(2). Since C(1) = 1 - S(1), D(1) = 1 - (1 - a)S(l), 
and S(2), C(2) and D(2) can be computed from S(1) by the duplication formulas (20), 
the only nontrivial task is the computation of S(1) = sn2(K/5, k). This can be done 
most efficiently by Salzer's algorithm [11] for Jacobian elliptic functions. 

The tables of the M-approxs., given at the end of this paper, were computed on 
the basis of the above theory. The computations were carried out on the NEAC-2203 
computer of Nagoya University, using floating-point double-precision arithmetic 
with 2-place exponent and 18-place mantissa. 

4. Improvement of Newton Iteration. Let us investigate the quality of successive 
iterates Si calculated from an arbitrary starting approximation So by the Newton 
iteration 

Si+ (x) = N(Si(x)) = (SAx) + x/Si(x))/2 

on an interval [a, b]. By defining sAx) as si(x) = Si(x)/VIx, it follows that 

Si + l(x) = N*(si(x)) = (si(x) + I/si(x))/2. 

The function N* defined by 

N *(y) = (y + l/y)/2 (y > 0) 

has the properties: 

N *(y) > N *(1) = 1, 

(24) yz = 1 -+ N*(y) = N*(z), 

(yz - l)(y - z) > 0 4 N*(y) > N*(z). 

Here, for the sake of simplicity, we agree that any r and s symbols with prime or 
double primes denote the minimum or the maximum, respectively, of the corre- 
sponding function. 

Now, it follows, from (24), that 

Sti > , i = 1929,....9 

where the equality holds only if 

sI ? 1 ? si. 
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At any rate, we have 

StSg' >1, i = 1,2.... 

This inequality means, in view of Theorem 1, that every iterate Si is biassed upward, 
and is not satisfactory for subsequent iterates. A remedy for this drawback of the 
conventional Newton iteration is to readjust every iterate by a correcting-factor so 
that the above mentioned inequality may be turned into an equality. 

The improved Newton iteration which incorporates the readjustment into the 
conventional one is defined by 

Ri+ l(x) = Ci+ IN(Ri(x)), 

(25) Ro(x) = COSo(x). 

From (24), the correcting factors are given by 

Co = 1/V(soso), 

(26) Ci= 1/VN*(r 1), i= 1, 2,..., 

where ri(x) = Ri(x)/l/x. 
Let us compare the convergence rates of the conventional and the improved 

Newton iterations. We may assume CO = 1 for simplicity, since, otherwise, the 
situation would be more favorable for the improved version. Letting ei and fi denote 
the maximum relative errors of Ri and Si, respectively, we have 

ei= r - 1, 

=St! --1, 

(27) ei+1 = 1 (1 + ed/(2(1 + ei))) -1, 

f i~ = f 2/(2(1 + fi)). 

Starting with eo = fo, we obtain 

el= /(1 + f') - 1 f1/2. 

Since it is difficult to obtain similar relations between ei and fi exactly, we content 
ourselves with approximate relations. Thus, applying the approximate recurrence 
formulas 

ei+ I - ee/4, f i+ 1 i f ?/2 

instead of the exact ones of (27), we obtain 

e2 ~ f2/8, e3 f 3/128,..., 

and, in general, ei - f i/22-1 This shows a remarkable acceleration of convergence 
accomplished by the use of the improved Newton iteration. Incidentally, it is an 
open question to prove or disprove the inequality 

ei < fi/2 

The excellence of the improved Newton iteration illustrated above suggests the 
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natural question: What is the result when it is applied to the M-approx. of order n? 
The following.theorem is a very interesting answer to this question. 

THEOREM 4. If Ro is the M-approx. of order n on an interval [a, b], then Ri obtained 
from Ro by the improved Newton iteration is the M-approx. of order 2'n on [a, b]. 

Proof. As shown previously in Section 3, Ro is given by 

x = a/dn2(u, k), 
(28) Ro(x)/Ji/x = ro(x) = dn(u/MO, ho)/V/ho 

on the interval [0, K] of u, where 

k = V((b - a)/b), 

dn(u/Mo, ho) = L(n) * dn(u, k). 

If we assume that the theorem is true for i = j, then we have 

RJ~x)l-,lx = rJ{x) = dn(u/Mj, hj)/1h9, 
(29) dn(u/Mj, hj) = L(2in) dn(u, k). 

Since rJ = 1/hj, rj' = /Vi/hs, rrJ' = 1, it follows, from (24) and (26), that 

Cj+1 = l/,N*(-. = 1(21hJ(l + hi)) 

When use is made of this value of Cj+ 1 in the equation 

rj+ 1(x) = Cj+ 1N*(rj~x)), 

which is a direct consequence of (25) for i = j, we obtain 

rj+ 1(x) = (h' + dn2(u/Mj, hj))/(Cj+ I(I + h)dn(u/Mj, hj)). 

Comparing this with Eqs. (7), we find that 

Cj+ i = VhJ+ 1 

rj+ 1(x) = dn(u/Mj+ 1, hj+ 1)//h;+ M, 

hj+ = (1 - h)/(1 + h), 

(30) h1+ = 21hJ/(l + h.), 

Mj+I = M/(1 + h'), 

dn(u/Mj+ 1, hj+ 1) = L(2) dn(u/lMj, hj). 

The last equation of (30), when combined with the second one of (29), yields 

dn(u/Mj+ 1, hj+ 1) = L(2 + 1n) dn(u, k), 

since, in general, the composition of L(p) and L(q) is L(pq). Thus, the theorem is proved 
for i = j + 1, and, therefore, for every i by induction. 

In order to carry out the improved Newton iteration described in Theorem 4, the 
correcting factors Ci should be computed in advance. The following recurrence 
formula 
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(31) Ci= &/(2Cj/(1 
+ Ct)), C0 = Vh' = 1/(1 + eo), 

which is easily established from (30), serves for this purpose. 
If, as is often the case with the computation by a computer, the number of itera- 

tions is prescribed, then it is desirable to obtain a C-approx. rather than an M-approx. 
in the last step. Fortunately, this is accomplished without altering the algorithm 
largely. It is sufficient to replace only the last step, say, the mth step,with 

Rm(x) - C*N(Rm-1(X)), 

where Cm is given, from (10.3) and (30), by 

(32) Cm = 2C2/(1 + Cm). 

R*(x), thus computed, is the C-approx. of order 2mn and its maximum relative error 
is given by 

-e = 1 - Cm. 

Let us now summarize the computing procedure into an algorithm. 
Algorithm. Improved Newton iteration. 
Preparation. Determine the number of iterations m, and the order n of the M-approx. 

used for a starting value. Compute C1/2, C2/2,.. ., Cm- 1/2, and Cm/2 by (31) and (32). 
First Step. Compute the starting value Ro(x). 
Loop. For 1 < i < m - 1, iterate 

Ri(x) = (Cj/2)(Rj_1(x) + x/Rj_1(x)). 

Last Step. Compute R*(x) by 

R*(x) = (C*/2)(Rm-i(x) + X/Rm-1(X)). 

5. Practical Considerations. The improved Newton iteration discussed in the last 
section is an excellent computing procedure. For one iteration, it requires the same 
amount of computational effort, an addition, a multiplication and a division, and is 
nevertheless more than two times as accurate as the conventional one. The only 
conceivable disadvantage is that the multiplications of the factors Cj/2 are a little 
slower than those of the factor 1/2 in binary computers. 

The important problem which is left untouched is the choice of the order of the 
M-approx. to be used as the starting approximation. The number and the kinds of 
arithmetic operations required for computing an M-approx. of the order n expressed 
in a continued fraction are shown below, where A stands for addition-subtraction, 
M for multiplication and D for division. 

A M D 

n: odd n-I 0 (n-1)/2 
n: even n -1 1 n/2 - 1 

In view of the fact that the result obtained from an M-approx. of order n after one 
iteration is identical with an M-approx. of order 2n and is more accurate than an 
M-approx. of order 2n - 1, we compare the amounts of computation required for 
the three cases. The results of the comparisons are shown in the following table. 
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A M D A M D 

Ml 0 0 0 M3 2 0 1 
M2 1 1 0 M4 3 1 1 

C x N(M1) 1 1 1 C x N(M2) 2 2 1 

A M D A M D 

M5 4 0 2 M7 6 0 3 
M6 5 1 2 M8 7 1 3 

C x N(M3) 3 1 2 C x N(M4) 4 2 2 

Inspecting the table we find that the choices n = 1 and n > 6 should be excluded 
from consideration, since the same or even better approximations could be obtained 
by other choices with less computational effort. It is interesting to note that the choice 
n = 4 is unexpectedly superior to that of n = 2at least in the count of multiplications 
and divisions. We can say hardly anything further, however, for the remaining four 
choices. There are many other conditions to be taken into account which cannot be 
discussed here in general. 

Table of M-approximations on [a, 1] 

n = 2, R(x) = A1x + Ao 

a= 1/2 a= 1/4 a= 1/16 
Al 0.59017 85321 0.68658 90480 0.89442 71910 
Ao 0.41731 92422 0.34329 45240 0.22360 67977 
eo 0.00749 77743 0.02988 35720 0.11803 39887 

a= 1/1,/10 a= 1/10 a= 1/100 
Al 0.65327 65093 0.82190 09419 1.19891 57337 
AO 0.36736 43780 0.25990 78987 0.11989 15734 
eo 0.02064 08873 0.08180 88406 0.31880 73070 

n = 3, R(x) = Ao-B/(x +C) 

a= 1/2 a= 1/4 a= 1/16 
Ao 2.54163 91882 2.18518 30604 1.68212 58623 
B 4.83752 82229 3.02289 91727 1.28977 37082 
C 2.13725 52822 1.54515 77602 0.84106 29311 
eo 0.00032 28502 0.00252 93327 0.01877 95823 

a= 1/X/10 a= 1/10 a= 1/100 
AO 2.29635 64606 1.82780 35809 1.27346 54826 
B 3.53268 53812 1.70087 90336 0.48120 83248 
C 1.72202 44124 1.02784 94879 0.40270 51447 
eo 0.00146 11372 0.01107 77906 0.07479 71524 
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n = 4, R(x) = Ajx + Ao-B/(x + C) 

a= 1/2 a= 1/4 a= 1/16 
Al 0.29508 51497 68 0.34322 01291 85 0.44582 68699 84 
AO 1 05584 61593 35 0.89968 99069 52 0.66874 03049 76 
B 0.59905 34042 71 0.36403 99211 80 0.13932 08968 70 
C 0.70710 67811 87 0.50000 00000 00 0.25000 00000 00 
eo 0.00001 39494 67 0.00021 67553 51 0.00311 04574 65 

a= 1/J10 a= 1/10 a= 1/100 
A1 0.32660 41728 27 0.41031 63482 08 0.58823 15087 81 
Ao 0.94895 58546 26 0.73716 05228 76 0.46805 64499 08 
B 0.43035 57848 93 0.19207 89905 24 0.04092 33299 03 
C 0.56234 13251 90 0.31622 77660 17 0.10000 00000 00 
eo 0.00010 43520 80 0.00154 54483 60 0.01908 49315 04 

n = 5, R(x) =Ao - B/(x + C - D/(x t E)) 

a= 1/2 a= 1/4 a= 1/16 
Ao 4.23606 54239 70 3.64197 75773 02 2.80378 55369 82 
B 24.27865 63619 77 15.34365 23620 24 6.85055 23463 25 
C 6.72879 05912 69 4.93393 81498 86 2.83472 72475 43 
D 0.32178 82625 97 0.16349 79998 78 0.04321 24689 67 
E 0.42215 13205 04 0.29411 22236 87 0.13887 95558 48 
eo 0.00000 06028 07 0.00001 85948 42 0.00051 85424 23 

a= 1/V10 a= 1/10 a= 1/100 
AO 3.82726 28073 50 3.04643 17009 11 2.12519 04940 28 
B 17.84758 11560 46 8.86587 47888 42 2.84184 47997 55 
C 5.46681 44323 38 3.38925 64040 23 1.52183 61874 77 
D 0.20546 54759 00 0.06766 96256 53 0.00758 48567 14 
E 0.33280 96905 39 0.17980 64913 92 0.04914 41073 35 
eo 0.00000 74573 53 0.00021 64864 94 0.00496 90136 43 
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